Approximating minimum cocolorings

نویسندگان

  • Fedor V. Fomin
  • Dieter Kratsch
  • Jean-Christophe Novelli
چکیده

A cocoloring of a graph G is a partition of the vertex set of G such that each set of the partition is either a clique or an independent set in G. Some special cases of the minimum cocoloring problem are of particular interest. We provide polynomial-time algorithms to approximate a minimum cocoloring on graphs, partially ordered sets and sequences. In particular, we obtain an efficient algorithm to approximate within a factor of 1.71 a minimum partition of a partially ordered set into chains and antichains, and a minimum partition of a sequence into increasing and decreasing subsequences.  2002 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating Minimum Power Covers of Intersecting Families and Directed Connectivity Problems

Approximating Buy-at-Bulk and Shallow-Light k-Steiner Trees p. 152 Improved Algorithms for Data Migration p. 164 Approximation Algorithms for Graph Homomorphism Problems p. 176 Improved Approximation Algorithm for the One-Warehouse Multi-Retailer Problem p. 188 Hardness of Preemptive Finite Capacity Dial-a-Ride Inge Li Gortz p. 200 Minimum Vehicle Routing with a Common Deadline p. 212 Stochasti...

متن کامل

Strengthened Hardness for Approximating Minimum Unique Game and Small Set Expansion

In this paper, the author puts forward a variation of Feige’s Hypothesis, which claims that it is hard on average refuting Unbalanced Max 3-XOR against biased assignments on a natural distribution. Under this hypothesis, the author strengthens the previous known hardness for approximating Minimum Unique Game, 5/4 − ǫ, by proving that Min 2-Lin-2 is hard to within 3/2 − ǫ and strengthens the pre...

متن کامل

On the Hardness of Approximating Some NP-optimization Problems Related to Minimum Linear Ordering Problem

We study hardness of approximating several minimaximal and maximinimal NP-optimization problems related to the minimum linear ordering problem (MINLOP). MINLOP is to find a minimum weight acyclic tournament in a given arc-weighted complete digraph. MINLOP is APX-hard but its unweighted version is polynomial time solvable. We prove that, MIN-MAX-SUBDAG problem, which is a generalization of MINLO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2002